NUCLEI

                  1. INTRODUCTION

In every atom, the positive charge and mass are densely concentrated at the centre of the atom forming its nucleus. The overall dimensions of a nucleus are much smaller than those of an atom. Experiments on scattering of α-particles demonstrated that the radius of a nucleus was smaller than the radius of an atom by a factor of about 104 . This means the volume of a nucleus is about 10–12 times the volume of the atom. In other words, an atom is almost empty. If an atom is enlarged to the size of a classroom, the nucleus would be of the size of pinhead. Nevertheless, the nucleus contains most (more than 99.9%) of the mass atom. In this topic we shall look for answers to such questions. We shall discuss various properties of nuclei such as their size, mass and stability, and also associated nuclear phenomena such as radioactivity, fission and fusion.





 

     2. ATOMIC MASSES AND                              COMPOSITION OF NUCLEUS 

The mass of an atom is very small, compared to a kilo gram; for example, the mass of a carbon atom, 12C, is 1.992647 × 10–26 kg. Kilo gram is not a very convenient unit to measure such small quantities. Therefore, a The atomic masses of various elements expressed in atomic mass unit (u) are close to being integral multiples of the mass of a hydrogen atom. There are, however, many striking exceptions to this rule. For example, the atomic mass of chlorine atom is 35.46 u. Accurate measurement of atomic masses is carried out with a mass spectrometer, The measurement of atomic masses reveals the existence of different types of atoms of the same element, which exhibit the same chemical properties, but differ in mass. Such atomic species of the same element differing in mass are called isotopes. (In Greek, isotope means the same place, i.e. they occur in the same place in the periodic table of elements.) It was found that practically every element consists of a mixture of several isotopes. The relative abundance of different isotopes differs from element to element. Chlorine, for example, has two isotopes having masses 34.98 u and 36.98 u, which are nearly integral multiples of the mass of a hydrogen atom. The relative abundances of these isotopes are 75.4 and 24.6 per cent, respectively. Thus, the average mass of a chlorine atom is obtained by the weighted average of the masses of the two isotopes. which agrees with the atomic mass of chlorine. Even the lightest element, hydrogen has three isotopes having masses 1.0078 u, 2.0141 u, and 3.0160 u. The nucleus of the lightest atom of hydrogen, which has a relative abundance of 99.985%, is called the proton. The mass of a proton is 27 m p 1.00727 u 1.67262 10 kg − = = × (13.2) This is equal to the mass of the hydrogen atom (= 1.00783u), minus the mass of a single electron (me = 0.00055 u).The other two isotopes of hydrogen are called deuterium and tritium. Tritium nuclei, being unstable, do not occur naturally and are produced artificially in laboratories. The positive charge in the nucleus is that of the protons. A proton carries one unit of fundamental charge and is stable. It was earlier thought that the nucleus may contain electrons, but this was ruled out later using arguments based on quantum theory. All the electrons of an atom are outside the nucleus. We know that the number of these electrons outside the nucleus of the atom is Z, the atomic number.





Comments

Popular posts from this blog

Diagonal Relationship between Beryllium and Aluminium || Relation between Beryllium and Aluminium

Distinction between Electromagnetic Waves and Matter Waves

QUANTUM NUMBERS (Principal, Azimuthal, Magnetic and Spin)

What do you mean by a precipitation reaction? Explain by giving examples.

Changing Trends And Career in Physical Education Solutions || Objective Type Questions || Objective Answers Chapter 1 Class 11 Solution || Physical Education ||